skip to main content


Search for: All records

Creators/Authors contains: "Taszarek, Mateusz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Environments associated with severe hailstorms, compared to those of tornadoes, are often less apparent to forecasters. Understanding has evolved considerably in recent years; namely, that weak low-level shear and sufficient convective available potential energy (CAPE) above the freezing level is most favorable for large hail. However, this understanding comes only from examining the mean characteristics of large hail environments. How much variety exists within the kinematic and thermodynamic environments of large hail? Is there a balance between shear and CAPE analogous to that noted with tornadoes? We address these questions to move toward a more complete conceptual model. In this study, we investigate the environments of 92 323 hail reports (both severe and nonsevere) using ERA5 modeled proximity soundings. By employing a self-organizing map algorithm and subsetting these environments by a multitude of characteristics, we find that the conditions leading to large hail are highly variable, but three primary patterns emerge. First, hail growth depends on a favorable balance of CAPE, wind shear, and relative humidity, such that accounting for entrainment is important in parameter-based hail prediction. Second, hail growth is thwarted by strong low-level storm-relative winds, unless CAPE below the hail growth zone is weak. Finally, the maximum hail size possible in a given environment may be predictable by the depth of buoyancy, rather than CAPE itself.

     
    more » « less
  2. Abstract

    Elevated mixed layers (EMLs) influence the severe convective storm climatology in the contiguous United States (CONUS), playing an important role in the initiation, sustenance, and suppression of storms. This study creates a high-resolution climatology of the EML to analyze variability and potential changes in EML frequency and characteristics for the first time. An objective algorithm is applied to ERA5 to detect EMLs, defined in part as layers of steep lapse rates (≥8.0°C km−1) at least 200 hPa thick, in the CONUS and northern Mexico from 1979 to 2021. EMLs are most frequent over the Great Plains in spring and summer, with a standard deviation of 4–10 EML days per year highlighting sizable interannual variability. Mean convective inhibition associated with the EML’s capping inversion suggests many EMLs prohibit convection, although—like nearly all EML characteristics—there is considerable spread and notable seasonal variability. In the High Plains, statistically significant increases in EML days (4–5 more days per decade) coincide with warmer EML bases and steeper EML lapse rates, driven by warming and drying in the low levels of the western CONUS during the study period. Additionally, increases in EML base temperatures result in significantly more EML-related convective inhibition over the Great Plains, which may continue to have implications for convective storm frequency, intensity, severe perils, and precipitation if this trend persists.

    Significance Statement

    Elevated mixed layers (EMLs) play a role in the spatiotemporal frequency of severe convective storms and precipitation across the contiguous United States and northern Mexico. This research creates a detailed EML climatology from a modern reanalysis dataset to uncover patterns and potential changes in EML frequency and associated meteorological characteristics. EMLs are most common over the Great Plains in spring and summer, but show significant variability year-to-year. Robust increases in the number of days with EMLs have occurred since 1979 across the High Plains. Lapse rates associated with EMLs have trended steeper, in part due to warmer EML base temperatures. This has resulted in increasing EML convective inhibition, which has important implications for regional climate.

     
    more » « less
  3. In this work, long-term trends in convective parameters are compared between ERA5, MERRA2, and observed rawinsonde profiles over Europe and the United States including surrounding areas. A 39-year record (1980–2018) with 2.07 million quality-controlled measurements from 84 stations at 0000 and 1200 UTC is used for the comparison, along with collocated reanalysis profiles. Overall, reanalyses provide similar signals to observations, but ERA5 features lower biases. Over Europe, agreement in the trend signal between rawinsondes and the reanalyses is better, particularly with respect to instability (lifted index), low-level moisture (mixing ratio) and 0–3 km lapse rates as compared to mixed trends in the United States. However, consistent signals for all three datasets and both domains are found for robust increases in convective inhibition (CIN), downdraft CAPE (DCAPE) and decreases in mean 0–4 km relative humidity. Despite differing trends between continents, the reanalyses capture well changes in 0–6 km wind shear and 1–3 km mean wind with modest increases in the United States and decreases in Europe. However, these changes are mostly insignificant. All datasets indicate consistent warming of almost the entire tropospheric profile, which over Europe is the fastest near-ground, while across the Great Plains generally between 2–3 km above ground level, thus contributing to increases in CIN. Results of this work show the importance of intercomparing trends between various datasets, as the limitations associated with one reanalysis or observations may lead to uncertainties and lower our confidence in how parameters are changing over time. 
    more » « less
  4. Abstract Globally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing. 
    more » « less
  5. Abstract Previous studies have identified environmental characteristics that skillfully discriminate between severe and significant-severe weather events, but they have largely been limited by sample size and/or population of predictor variables. Given the heightened societal impacts of significant-severe weather, this topic was revisited using over 150 000 ERA5 reanalysis-derived vertical profiles extracted at the grid-point nearest—and just prior to—tornado and hail reports during the period 1996–2019. Profiles were quality-controlled and used to calculate 84 variables. Several machine learning classification algorithms were trained, tested, and cross-validated on these data to assess skill in predicting severe or significant-severe reports for tornadoes and hail. Random forest classification outperformed all tested methods as measured by cross-validated critical success index scores and area under the receiver operating characteristic curve values. In addition, random forest classification was found to be more reliable than other methods and exhibited negligible frequency bias. The top three most important random forest classification variables for tornadoes were wind speed at 500 hPa, wind speed at 850 hPa, and 0–500-m storm-relative helicity. For hail, storm-relative helicity in the 3–6 km and -10 to -30 °C layers, along with 0–6-km bulk wind shear, were found to be most important. A game theoretic approach was used to help explain the output of the random forest classifiers and establish critical feature thresholds for operational nowcasting and forecasting. A use case of spatial applicability of the random forest model is also presented, demonstrating the potential utility for operational forecasting. Overall, this research supports a growing number of weather and climate studies finding admirable skill in random forest classification applications. 
    more » « less
  6. null (Ed.)
    Abstract The near-ground wind profile exhibits significant control over the organization, intensity, and steadiness of low-level updrafts and mesocyclones in severe thunderstorms, and thus their probability of being associated with tornadogenesis. The present work builds upon recent improvements in supercell tornado forecasting by examining the possibility that storm-relative helicity (SRH) integrated over progressively shallower layers has increased skill in differentiating between significantly tornadic and nontornadic severe thunderstorms. For a population of severe thunderstorms in the United States and Europe, sounding-derived parameters are computed from the ERA5 reanalysis, which has significantly enhanced vertical resolution compared to prior analyses. The ERA5 is shown to represent U.S. convective environments similarly to the Storm Prediction Center’s mesoscale surface objective analysis, but its greater number of vertical levels in the lower troposphere permits calculations to be performed over shallower layers. In the ERA5, progressively shallower layers of SRH provide greater discrimination between nontornadic and significantly tornadic thunderstorms in both the United States and Europe. In the United States, the 0–100 m AGL layer has the highest forecast skill of any SRH layer tested, although gains are comparatively modest for layers shallower than 0–500 m AGL. In Europe, the benefit from using shallower layers of SRH is even greater; the lower-tropospheric SRH is by far the most skillful ingredient there, far exceeding related composite parameters like the significant tornado parameter (which has negligible skill in Europe). 
    more » « less
  7. null (Ed.)
    Abstract Long-term trends in the historical frequency of environments supportive of atmospheric convection are unclear, and only partially follow the expectations of a warming climate. This uncertainty is driven by the lack of unequivocal changes in the ingredients for severe thunderstorms (i.e., conditional instability, sufficient low-level moisture, initiation mechanism, and vertical wind shear). ERA5 hybrid-sigma data allow for superior characterization of thermodynamic parameters including convective inhibition, which is very sensitive to the number of levels in the lower troposphere. Using hourly data we demonstrate that long-term decreases in instability and stronger convective inhibition cause a decline in the frequency of thunderstorm environments over the southern United States, particularly during summer. Conversely, increasingly favorable conditions for tornadoes are observed during winter across the Southeast. Over Europe, a pronounced multidecadal increase in low-level moisture has provided positive trends in thunderstorm environments over the south, central, and north, with decreases over the east due to strengthening convective inhibition. Modest increases in vertical wind shear and storm-relative helicity have been observed over northwestern Europe and the Great Plains. Both continents exhibit negative trends in the fraction of environments with likely convective initiation. This suggests that despite increasing instability, thunderstorms in a warming climate may be less likely to develop due to stronger convective inhibition and lower relative humidity. Decreases in convective initiation and resulting precipitation may have long-term implications for agriculture, water availability, and the frequency of severe weather such as large hail and tornadoes. Our results also indicate that trends observed over the United States cannot be assumed to be representative of other continents. 
    more » « less
  8. null (Ed.)
    Abstract In this study we compared 3.7 mln rawinsonde observations from 232 stations over Europe and North America with proximal vertical profiles from ERA5 and MERRA2 to examine how well reanalysis depicts observed convective parameters. Larger differences between soundings and reanalysis are found for thermodynamic theoretical parcel parameters, low-level lapse rates and low-level wind shear. In contrast, reanalysis best represents temperature and moisture variables, mid-tropospheric lapse rates, and mean wind. Both reanalyses underestimate CAPE, low-level moisture and wind shear, particularly when considering extreme values. Overestimation is observed for low-level lapse rates, mid-tropospheric moisture and the level of free convection. Mixed-layer parcels have overall better accuracy when compared to most-unstable, especially considering convective inhibition and lifted condensation level. Mean absolute error for both reanalyses has been steadily decreasing over the last 39 years for almost every analyzed variable. Compared to MERRA2, ERA5 has higher correlations and lower mean absolute errors. MERRA2 is typically drier and less unstable over central Europe and the Balkans, with the opposite pattern over western Russia. Both reanalyses underestimate CAPE and CIN over the Great Plains. Reanalyses are more reliable for lower elevations stations and struggle along boundaries such as coastal zones and mountains. Based on the results from this and prior studies we suggest that ERA5 is likely one of the most reliable available reanalysis for exploration of convective environments, mainly due to its improved resolution. For future studies we also recommend that computation of convective variables should use model levels that provide more accurate sampling of the boundary-layer conditions compared to less numerous pressure levels. 
    more » « less
  9. null (Ed.)
    Abstract In this study we investigate convective environments and their corresponding climatological features over Europe and the United States. For this purpose, National Lightning Detection Network (NLDN) and Arrival Time Difference long-range lightning detection network (ATDnet) data, ERA5 hybrid-sigma levels, and severe weather reports from the European Severe Weather Database (ESWD) and Storm Prediction Center (SPC) Storm Data were combined on a common grid of 0.25° and 1-h steps over the period 1979–2018. The severity of convective hazards increases with increasing instability and wind shear (WMAXSHEAR), but climatological aspects of these features differ over both domains. Environments over the United States are characterized by higher moisture, CAPE, CIN, wind shear, and midtropospheric lapse rates. Conversely, 0–3-km CAPE and low-level lapse rates are higher over Europe. From the climatological perspective severe thunderstorm environments (hours) are around 3–4 times more frequent over the United States with peaks across the Great Plains, Midwest, and Southeast. Over Europe severe environments are the most common over the south with local maxima in northern Italy. Despite having lower CAPE (tail distribution of 3000–4000 J kg −1 compared to 6000–8000 J kg −1 over the United States), thunderstorms over Europe have a higher probability for convective initiation given a favorable environment. Conversely, the lowest probability for initiation is observed over the Great Plains, but, once a thunderstorm develops, the probability that it will become severe is much higher compared to Europe. Prime conditions for severe thunderstorms over the United States are between April and June, typically from 1200 to 2200 central standard time (CST), while across Europe favorable environments are observed from June to August, usually between 1400 and 2100 UTC. 
    more » « less
  10. null (Ed.)
    Abstract As lightning-detection records lengthen and the efficiency of severe weather reporting increases, more accurate climatologies of convective hazards can be constructed. In this study we aggregate flashes from the National Lightning Detection Network (NLDN) and Arrival Time Difference long-range lightning detection network (ATDnet) with severe weather reports from the European Severe Weather Database (ESWD) and Storm Prediction Center (SPC) Storm Data on a common grid of 0.25° and 1-h steps. Each year approximately 75–200 thunderstorm hours occur over the southwestern, central, and eastern United States, with a peak over Florida (200–250 h). The activity over the majority of Europe ranges from 15 to 100 h, with peaks over Italy and mountains (Pyrenees, Alps, Carpathians, Dinaric Alps; 100–150 h). The highest convective activity over continental Europe occurs during summer and over the Mediterranean during autumn. The United States peak for tornadoes and large hail reports is in spring, preceding the maximum of lightning and severe wind reports by 1–2 months. Convective hazards occur typically in the late afternoon, with the exception of the Midwest and Great Plains, where mesoscale convective systems shift the peak lightning threat to the night. The severe wind threat is delayed by 1–2 h compared to hail and tornadoes. The fraction of nocturnal lightning over land ranges from 15% to 30% with the lowest values observed over Florida and mountains (~10%). Wintertime lightning shares the highest fraction of severe weather. Compared to Europe, extreme events are considerably more frequent over the United States, with maximum activity over the Great Plains. However, the threat over Europe should not be underestimated, as severe weather outbreaks with damaging winds, very large hail, and significant tornadoes occasionally occur over densely populated areas. 
    more » « less